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ABSTRACT

Non-homologous end-joining (NHEJ) of DNA double-
strand breaks (DSBs) is mediated by two protein
complexes comprising Ku80/Ku70/DNA-PKcs/
Artemis and XRCC4/LigaselV/XLF. Loss of Ku or
XRCC4/LigaselV function compromises the rejoining
of radiation-induced DSBs and leads to defective
V(D)J recombination. In this study, we sought to
define how XRCC4 and Ku80 affect NHEJ of site-
directed chromosomal DSBs in murine fibroblasts.
We employed a recently developed reporter system
based on the rejoining of I-Scel endonuclease-
induced DSBs. We found that the frequency of
NHEJ was reduced by more than 20-fold in
XRCC4—/— compared to XRCC4+/+ cells, while a
Ku80 knock-out reduced the rejoining efficiency by
only 1.4-fold. In contrast, lack of either XRCC4 or
Ku80 increased end degradation and shifted repair
towards a mode that used longer terminal micro-
homologies for rejoining. However, both proteins
proved to be essential for the repair of radiation-
induced DSBs. The remarkably different phenotype
of XRCC4- and Ku80-deficient cells with regard to
the repair of enzyme-induced DSBs mirrors the
embryonic lethality of XRCC4 knock-out mice
as opposed to the viability of the Ku80 knock-out.

Thus, I-Scel-induced breaks may resemble DSBs
arising during normal DNA metabolism and mouse
development. The removal of these breaks likely has
different genetic requirements than the repair of
radiation-induced DSBs.

INTRODUCTION

DNA double-strand breaks (DSBs) represent the most
serious DNA lesion, which, if not adequately repaired, can
lead to cell death through the generation of lethal
chromosomal aberrations. Alternatively, inadequately
repaired DSBs may give rise to potentially carcinogenic
mutations or chromosomal rearrangements. In mamma-
lian cells, non-homologous end-joining (NHEJ) is the
principal pathway for the removal of DSBs throughout
the entire cell cycle. NHEJ relies on a limited number of
core proteins that are sufficient to execute DSB repair
in vitro (1,2). The heterodimer of Ku70 and Ku80
recognizes and binds DNA ends and recruits the catalytic
subunit of the DNA-dependent kinase (DNA-PKcs),
together forming the DNA-PK holoenzyme. Ku proteins
and DNA-PKcs are both capable of tethering DNA ends
(3-5), with Ku translocating internally upon binding of
DNA-PKcs to the DNA end (6). Prior to ligation, the
DNA ends need to be trimmed for proper annealing. At
least a fraction of DSB ends is tailored by the Artemis
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nuclease in concert with DNA-PKcs (7). Other exo- and
endonucleases are not yet defined. The polymerases Pol p
and Pol A likely replenish small sequence gaps (8,9).
The fill-in synthesis appears to be tightly coupled to the
ligation of DNA ends (2,8). The latter step is performed
by DNA ligase IV (LiglV) together with its obligatory
cofactor XRCC4 (10,11). Another partner involved in the
ligation step in vivo has been recently identified as
the XRCC4-like factor (= XLF, Cernunnos) (12,13).
The ligation complex is recruited by and interacts with Ku
and DNA-PKcs (14-16).

Cells deficient in any of the NHEJ core proteins display
pronounced hypersensitivity to ionizing radiation (IR)
and a reduced ability to rejoin IR-induced DSBs (17). The
NHEJ core proteins are also required for V(D)J recombi-
nation and class-switch recombination (18-20). Deficiency
of either of these proteins leads to severe clinical
immunodeficiency in mice and humans (21-25). Further,
NHEJ deficiencies in mice are associated with impaired
neurogenesis and growth delay (25-27). Defective NHEJ
also causes gross chromosomal aberrations, genomic
instability and lymphomagenesis (28,23). In humans,
however, defective NHEJ has not yet been extensively
linked to malignancy (29-32).

Genetic knock-out of XRCC4 but not of Ku80 in mice
leads to embryonic death, suggesting that XRCC4
function is critical for the removal of DSBs that arise
during development (22,23). Interestingly, this differential
importance of XRCC4 and Ku80 for the DSB repair
efficiency is generally not well reflected in biochemical and
extrachromosomal end-joining assays (33-36). Further-
more, loss of XRCC4 or Ku80 causes IR hypersensitivity
that is of similar severity.

Chromosomal plasmid assays that employ the rare-
cutting I-Scel endonuclease have been employed success-
fully to elucidate the genetic determinants and molecular
mechanisms of homologous recombination (37,38).
Recently, others and we have applied these assays to
NHEJ as well (39-41). In a report by Lopez and
colleagues (39), mutation of Ku80 had surprisingly little
if any effect on the rejoining of non-complementary ends
generated by cleavage of two inverted I-Scel recognition
sites spaced some kb apart. However, it cannot be
excluded that residual Ku80 activity in the xrs6 CHO
cells was sufficient for DSB rejoining in that assay. The
importance of XRCC4/LiglV for the rejoining of site-
directed chromosomal breaks was not studied and has
remained unknown.

In the present study, we therefore investigated the roles
of XRCC4 and Ku80, as the respective representatives
of the XRCC4/XLF/LiglV and Ku/DNA-PKcs/Artemis
complex, in the rejoining of I-Scel endonuclease-induced
DSBs. We report the chromosomal repair phenotype of
XRCC4 null mouse cells, which is characterized by a more
than 20-fold reduction of NHEJ proficiency, increased
end-degradation, and an increase in microhomology
length used for joining of ends. Strikingly, knock-out
of Ku80 resulted only in a mild I-Scel end-joining defect
(1.4-fold), while having an impact on repair fidelity that
was similar to the loss of XRCC4.
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Figure 1. NHEJ reporter construct. (A) Illustration of the reporter
assay. See text for details. (B) Double-stranded sequence flanking both
I-Scel recognition sites (bold), which are placed in inverse orientation:
Simultaneous cleavage of both sites with pop-out of the intervening
sequence creates two non-compatible cohesive ends. A single I-Scel
cleavage creates compatible cohesive ends that can be directly religated.
The artificial start codon is underscored. Figure is adopted from (41).

MATERIALS AND METHODS
Cells

Mouse embryonic fibroblasts (MEFs) lacking either Ku80
or the XRCC4 (28, 23, kindly gifted by A. Nussenzweig
and F. Alt) and the respective parental strains (all strains
were p53—/—) were cultured in DMEM medium supple-
mented with 15% FCS, 1% penicillin/streptomycin at
37°C in an atmosphere of 5% CO,. The presence or
absence of XRCC4 and Ku80 was verified by Western
blotting (Supplementary Figure S1). To harvest clones
grown in selection medium (either Puromycin or
XHATM, see below) in T-175 plastic culture flasks
(Greiner, Germany), a 75W soldering iron (ERSA
Multisprint, ERSA, Germany) was used to melt a 1cm
hole directly above each individual colony through which
careful  micro-trypsinization (10pl  Trypsin-EDTA,
GIBCO-Invitrogen) was possible. Only those clones were
chosen that grew in sufficient distance (> lcm) to its
proximate neighbor colony to avoid cross contamination.
The individual clones were transferred to microwell plates
and further expanded.

NHEDJ reporter substrate

The generation of the pPHW2 plasmid was described
previously (40). Induction of DSBs by the I-Scel
endonuclease and rejoining by NHEJ lead to gpt
translation and resistance to XHATM-containing selec-
tion medium (Figure 1). Here, 0.5 ng of the pPHW2 was
linearized with Pvul and electroporated into 10° cells.
Cells were grown for 2-3 weeks in selection medium
(0.5 pg/ml puromycin, Sigma) to obtain clones with stable
integration of pPHW2. This was verified by PCR using
the primer pair ATGTTGCAGATCCATGCACG and



AATACGACGCCATATCCC, yielding a 400-bp frag-
ment only in clones with an integrated repair substrate.
Single copy integration was verified by sequencing of
repair products (see below).

NHEJ assay

DSBs were induced by transfecting 3 x 10° cells carrying
the pPHW2 plasmid with 50 ug of pCMV-3xNLS-I-Scel
(kindly provided by M. Jasin) or a control plasmid (40).
To allow for I-Scel expression and end-joining to proceed,
cells were grown for 48 h in non-selective medium. Cells
were then replated at appropriate densities between 10°
and 10° per 175 cm? tissue culture flasks and grown for 2-3
weeks in selection medium containing XHATM (xanthine,
hypoxanthine, aminopterin, thymidine and mycophenolic
acid at 10, 13.6, 0.17, 3.87 and 10 pg/ml respectively; all
Sigma). The relative NHEJ frequency was derived from
the number of XHATM-resistant colonies per number of
seeded cells. This frequency was corrected for the plating
efficiency of control cells grown in non-selective medium
and normalized to the transfection efficiency, ranging
between 0.53 and 0.56 for Ku80 cells and 0.43 and 0.48 for
XRCCH4 cells.

Repair product analysis

Individual XHATM-resistant colonies were harvested,
expanded and genomic DNA was subjected to sequencing
across the repair junction using the primers agctattcca-
gaagtagtgaggag (forward) and gtgatcgtagctggaaatacaaac
(reverse), an automated sequencer (ABI 3100, Applied
Biosystems-Hitachi) and Big-Dye technology.

Clonogenic cell survival and overall DSB rejoining after
irradiation

Cells were irradiated with X-ray doses of up to 8 Gy and
seeded for colony formation as described (42). For
measuring of DSB repair, cells were irradiated with
50 Gy and rejoining of DSBs was measured at different
time intervals after irradiation by neutral constant-field gel
electrophoresis as described (42).

Statistics

Experiments were repeated at least three times, and data
are presented as mean +SEM. Statistical analysis, data
fitting and graphics were performed by means of the
Prism 4.0 computer program (GraphPad Software,
San Diego, USA).

RESULTS

To elucidate the roles of XRCC4 and Ku80 in chromo-
somal NHEJ, we made use of a recently developed I-Scel
reporter assay that has been described elsewhere (40,41).
Briefly, the plasmid substrate, pPHW2, contains an
artificial translational start sequence inserted between
an early SV40 promoter and the bacterial gpt gene
(Figure 1A). The associated artificial open reading frame
is shifted by 1 bp against the downstream gpt ORF and
is dominant over the gpt start site, hence, preventing
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gpt translation. Two I-Scel recognition sites flank the
artificial ATG site. Simultaneous cleavage at both I-Scel
sites results in frequent loss, i.e. pop-out, of the 34 bp-
sequence containing the artificial ATG. NHEJ of the
resulting DNA ends reconstitutes translation of the
original gpt ORF, thereby allowing the detection of
recombinants as colonies growing in XHATM selection
medium. The tandem I-Scel sites are inverted, so that
I-Scel cleavage results in two of non-complementary 3’
single-stranded overhangs of 4 bases. These ends require
modification prior to ligation (Figure 1B), which is a
typical feature of repair via NHEJ (2, 34, 35, 41).

A hallmark of this plasmid design is that it does not
select for specific NHEJ products, i.e. the pop-out
mechanism allows for the detection of a broad variety of
sequence alterations that range from single nucleotide
alterations to deletions of up to 100 bp at the I-Scel sites.
Since the 34-bp pop-out leaves the DNA ends in close
proximity (within one nucleosome), the rejoining mecha-
nism is likely representative of the repair of a single DSB.
In addition, the assay can monitor a variety of repair
events associated with sequence alterations after a single
I-Scel cleavage (for details see below and Ref. (40,41)). In
contrast, a direct ligation of an individually cleaved I-Scel
site, which likely occurs in the majority of cells, cannot be
detected as it does not alter the plasmid sequence. Finally,
DSBs induced in the S/G2-phases of the cell cycle may
also be repaired via error-free homologous recombination
with the sister chromatid as a donor, which likewise does
not alter the wild-type sequence and thus remains
undetectable.

Lack of XRCC4 reduces the efficiency and fidelity of
NHEJ of I-Scel-induced chromosomal DSBs

The pPHW?2 reporter was stably integrated as a single
copy into the genome of MEFs derived from
XRCC4+/+ or XRCC4—/— mice (23). Subsequently,
cells were transiently transfected with the I-Scel expres-
sion plasmid and incubated for 3 weeks in selective
medium for colony formation. Four independent
XRCC4+/+ clones carrying pPHW2 showed a mean
NHEJ frequency of 0.034 (SEM,+0.01) (Figure 2A,
Supplementary Table S1). Knock-out of XRCC4 in
another four clones drastically reduced the NHEJ
efficiency on average to 0.0015 (£0.00045), corresponding
to a 23-fold suppression compared to the parental cells
(P <0.0001). Of note, the data indicate that a small
fraction of DSBs was still rejoined in the absence of a
functional XRCC4/LiglV complex.

The persistence of non-ligated DNA ends in
XRCC4—/— cells may lead to increased end degradation
and deletion formation. To address this possibility, we
raised individual XHATM-resistant clones after induction
of I-Scel breaks and performed DNA sequencing across
the repair junctions (see Supplementary Figure S2).
XRCC4+/+ cells showed minimal end resections of
0—4nt, which were restricted to the 3 overhangs
(Figure 2B). Rejoining was mediated exclusively by 1—
2nt of A/T microhomologies present in the overhangs. In
contrast, this high-fidelity repair phenotype was absent in
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Figure 2. Efficiency and fidelity of NHEJ depending on XRCC4. (A) Endjoining frequency after induction of DSBs by I-Scel endonuclease as
measured by the frequency of XHATM- resistant colonies normalized to colony formation in non-selective medium. (B) Examples of repaired DNA
sequences obtained from genomic DNA of individual XHATM resistant clones. Only the sense strand is shown. I-Scel recognition sites are depicted
in bold. In the parental sequence, both start codons are underscored. Microhomologies are underscored within the example sequences. Fill-in
synthesis is drawn as lower case letters. N indicates the total number of analyzed sequences. (C) Distribution of length of deletions at individual
junctions. Deletions are defined as the sum of base pairs lost at both sites of the DSB. According to this definition, the 34-bp pop-out event in case of
double I-Scel cleavage is not considered a deletion. (D) Distribution of the number of homologous bases (microhomologies) used for junction

formation. Only terminal microhomologies are considered.

XRCC4—/— cells. In these cells, all individual repair
products revealed large deletions ranging from 10 to 76 bp
(Figure 2B and C). The mean deletion length was 0.25 bp
(£0.2) and 31 bp (£2.2) in XRCC4+/+ and XRCC4—/—
cells, respectively (Mann—Whitney test, P <0.0001). In
addition to reduced repair efficiency and fidelity,
XRCC4—/— cells frequently changed to a repair mode
that employed longer microhomologies for the annealing
of ends, i.e. 3-5nt, which never occurred in XRCC4+/+
cells (Fisher’s exact test, P = 0.049) (Figure 2D). End-
joining along 1-2nt of microhomology was observed in
only 35% of repair events in XRCC4—/— cells.

Lack of Ku80 reduces the fidelity but not the efficiency of
NHEJ

To compare the repair phenotype of XRCC4—/— MEFs
with the consequences of losing Ku80, we integrated
pPHW?2 into an isogenic pair of Ku80+ /+ and Ku80—/—
MEFs (28). We found that lack of Ku80 only led to a

statistically non-significant reduction of NHEJ, i.e. by a
factor of 1.4 (P =0.6) (Figure 3A, Supplementary
Table S1), which markedly contrasts with the more than
20-fold reduced rejoining ability of XRCC4—/— cells.
We considered the possibility that extensive deletions
(> 100 bp) arising from the cleaved I-Scel sites could have
affected the adjacent promoter or gpt reporter gene in the
XRCC4—/— cells, thereby leading to XHATM sensitivity
and low rejoining frequencies. We, therefore, plated cells
following I-Scel break induction into non-selective
medium for colony formation. We observed that colony
survival was significantly reduced only in XRCC4- but not
in Ku80-deficient cells when compared to the transfection
of a pNeo control plasmid (Supplementary Figure S3).
These data indicate that XRCC4—/— cells suffer from
a high frequency of lethal unrejoined breaks while
Ku80—/— are widely capable of resealing I-Scel breaks.
The absence of an effect on rejoining efficiency in
Ku80—/— cells does not preclude the possibility of an
alteration in the fidelity of repair. We thus proceeded to
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Figure 3. Efficiency and fidelity of NHEJ depending on Ku80. (A) End-joining frequency after induction of DSBs by I-Scel endonuclease analogous
to Figure 2A. (B) Examples of repaired DNA sequences obtained from genomic DNA of individual XHATM resistant clones. Display as in Figure 2,
italic font indicates inserted nucleotides. (C) and (D) Distribution of deletion length and microhomology usage as in Figure 2.

perform DNA sequencing on individual MEF clones
following I-Scel break induction. In Ku80+/+ MEFs, we
observed a spectrum of repair products similar although
not identical to the repair phenotype of XRCC4+ /+ cells
(Figure 3B), which is likely attributable to the different
mouse strains used. As in the XRCC4—/— cells, we
detected an increase in deletion size in Ku80—/— MEFs
compared to wild-type cells (Figure 3C). In Ku80+/+
cells, 42% of junctions showed small deletions of 4 bp or
less, but only 10% of these high-fidelity events were
detected in knock-out cells. Accordingly, deletions in
Ku80-deficient cells were significantly longer than in the
wild-type cells, i.e., a mean of 30bp (£4) versus 18 bp
(£3), respectively (Mann—Whitney test, P = 0.005). In
addition, Ku80—/— cells used significantly more often
microhomologies of 4-5nt than the wild-type cells
(Figure 3D, P = 0.005), suggesting that loss of KuS80,
similar to XRCC4, changes the mechanism of rejoining.
Interestingly, the percentage of junctions mediated by
1-2 nt microhomology, which appeared to be a feature
of XRCC4-mediated NHEJ, was virtually identical in
Ku80+/+ and Ku80—/— cells (~50% of all events).

We noticed that the repair spectrum of XRCC4+/+
and Ku80+/+ MEFs was not identical, which is likely
due to the different origin of the respective mouse strains
(Figures 2 and 3) (23,28). To exclude that the less precise
baseline NHEJ activities seen in the Ku80+ /+ cells have
masked the impact of losing Ku80, we repeated the
experiments in K1 wild-type and Ku80-mutant CHO cells.
Loss of Ku80 function only led to a slightly reduced
NHEJ capacity, i.e. from 0.042 to 0.031 (Supplementary
Table S2), which confirmed the observed mild defect in
Ku80—/— MEFs compared to Ku80 cells (see Figure 3A).

Taken together, our data reveal a reduced fidelity of
NHEJ and preferred usage of longer microhomologies
in both repair-deficient strains; however, only loss of
XRCCH4 significantly reduced the efficiency of rejoining.

Lack of XRCC4 or Ku80 enhances error-prone rejoining of
complementary DNA ends

Previous studies with extrachromosomal substrates
suggested that Ku80 and LiglV are involved in the
precise ligation of complementary DNA ends (43-45).
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As outlined above, complementary ends are created when
only one I-Scel site is cleaved. Error-free religation does
not alter the DNA sequence and cannot be detected
directly. However, if precise end-ligation fails, sequence
alterations that abolish the dominant function of the
artificial start codon may occur (41). Examples of single-
cleavage events are included in Figures 2B and 3B where
the artificial ATG was either deleted (Sequences 4/4, 14/5,
14/13, 17/10) or shifted in frame with the original start
codon (Sequences 52/11, 52/13), either of which restored
gpt translation and resistance to XHATM.

We next analyzed the subpopulation of repair products
arising from cleavage at individual I-Scel sites in more
detail to determine whether loss of either XRCC4 or Ku80
had compromised the rate of precise endligation, thereby
leading to sequence alteration upon repair of the ends
(i.e. error-prone repair). Specifically, we estimated the
fraction of error-prone repair events at individual I-Scel
sites among all detectable repair events, i.e. individual
I-Scel repair plus repair following pop-out events. In
XRCC4+/+ cells, the portion of repair events at
individual I-Scel sites was small (11%) (Supplementary
Figure S2B), suggesting that the vast majority of these
breaks was closed by precise religation. In contrast, in
XRCC4—/— cells the fraction of error-prone repair events
increased to 41% (P = 0.028), consistent with impaired
precise ligation. The increase in error-prone rejoining of
complementary ends in Ku80—/— cells was less pro-
nounced, i.e. by 11% (Supplementary Figure S2B), and
did not reach statistical significance.

Together, our data illustrate distinct roles of XRCC4
and Ku80 in NHEJ of I-Scel-induced DSBs with
complementary and non-complementary ends. Loss of
XRCC4 uniformly leads to a more severe repair defect
than loss of Ku80.

Both XRCC4 and Ku80 are equally required for
radioresistance and repair of IR-induced DSBs

After exposure to IR, DSB repair primarily relies on
NHEJ. Accordingly, using constant-field gel electropho-
resis, XRCC4 and Ku80 knock-out MEFs demonstrated

a substantial DSB repair defect when compared to the
respective wild-type strain (Figure 4B). Notably, loss of
either gene resulted in a similar amount of unrepaired
IR-induced DSBs, which is in contrast to the different
I-Scel rejoining efficiencies seen in XRCC4—/— and
Ku80—/— cells (Figures 2A and 3A). The observed
impairment in the repair of radiation damage translated
into a similar degree of cellular radiation hypersensitivity
in both knock-out lines (Figure 4A).

DISCUSSION
XRCC4 promotes efficiency and fidelity of NHEJ

We characterize here the impact of murine XRCC4
deficiency on NHEJ of chromosomal DSBs on a
molecular level. Upon loss of XRCC4, cells demonstrated
a more than 20-fold decreased ability to rejoin I-Scel
endonuclease-induced DSBs (Figure 2A) which is a much
more pronounced difference than the effects reported for
in vitro end-joining extrachromosomal NHEJ, or class
switch recombination but similar to the effects upon
V(D)J recombination (19,20,33-35). The importance of
XRCCH4 for the rejoining of enzymatic breaks extended to
both, cohesive complementary DNA ends that are
substrates for precise religation as well as non-comple-
mentary ends that are typically rejoined along 1-2nt of
terminal A/T microhomology.

Others and we have found extended deletions and
frequent usage of longer microhomologies in the absence
of XRCCH4 (this study, 19,24,35,36). Deletions are likely
due to exonuclease activity in the absence of the XRCC4/
LiglV complex. XRCC4 is further required for the
recruitment and activation of the polymerase X family
members Pol A and Polp, which have emerged as the
important polymerases in NHEJ (2,8,9,46). Reduced
polymerase activity should result in unopposed exonu-
clease activity, which may lead to the long deletions
observed in XRCC4—/— cells. Progressive end resection
eventually exposes longer sequence homologies at the
DNA ends, which may provide sufficient stability to



complete end-joining even without XRCC4/LiglV. It is
tempting to speculate that DNA ligase 111 (LiglII) rejoins
these ends. Longer microhomologies not only increase the
stability of the junction but also better separate the free
DNA ends. The gaps on each strand may be then
recognized as individual SSBs, which are better substrates
for LiglIl than genuine DSBs (47). However, in our study
only about 25% of junctions formed independently of any
microhomologies (Figure 2D), thus additional mecha-
nisms must exist for stabilization and synapsis of ends.

Ku80 is dispensable for efficient NHEJ of site-directed DSBs

Similar to the XRCC4—/— repair spectrum, Ku80—/—
cells exhibited an increase in deletion size and a shift
towards a mode of end-joining that relies on the use of
longer microhomologies (3—5bp) (Figure 3C). This is in
line with several previous reports (34,35,39,43,45,48,49).
Interestingly, we could not detect a significantly reduced
efficiency of end-joining in Ku80—/— compared to
Ku80+/+ cells (Figure 3A, Supplementary Figure S3).
Similar results were reported by Ma et al. for yeast (50)
and Guirouilh-Barbat ez al. (39) for hamster cell mutants
despite notable differences in the chromosomal repair
assays. The mild repair phenotype of Ku80—/— MEFs
contrasts the severe rejoining deficiency in XRCC4—/—
cells, which mirrors the observed differences in embryonic
viability seen with Ku80 versus XRCC4 knock-out mice
(22,23). This raises the possibility that the chromosomal
breaks created by the I-Scel endonuclease represent a
better model of DSBs occurring during normal DNA
metabolism and mouse development than biochemical or
extrachromosomal end-joining systems.

Why is Ku80 not required for proficient end-joining?
We cannot exclude the possibility that binding of the
I-Scel enzyme and DNA cleavage may alter the chromatin
structure sufficiently to attract other repair proteins,
thereby alleviating the need for Ku to act as a signal
amplifier and attractor of repair components. On the other
hand, Ku is needed for the recruitment of XRCC4/LiglV
(14, 16), yet we did not observe the same rejoining defect
in Ku80 cells as in XRCC4—/— cells. A more attractive
explanation involves the repair pathway relying on LiglII,
PARP-1, and XRCCI, which operates alternatively and
independently of the DNA-PK-dependent pathway, as
shown by the Salles and Iliakis laboratories (51-53). This
alternative rejoining activity was guided by the initial
binding of PARP-1 to free DNA ends, which required the
absence of Ku. Interestingly, the efficiency of this pathway
could be significantly increased in LiglV-deficient cells by
knock-down of Ku70 (50). This observation supports
previous results showing that LiglV-deficient DT40 cells
and even the embryonic lethality of LiglV—/— mice could
be rescued by a simultaneous abrogation of Ku70 (54,55).
Thus, repair in Ku80—/— MEFs may be channeled
towards a Liglll-dependent pathway, which maintains
rejoining levels although at the expense of sequence loss at
the break sites. In contrast, XRCC4-deficient cells express
normal Ku80, which impairs access of PARP-1 to DNA.
Hence, LigllI-mediated end-joining remains inefficient.
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Distinct roles for Ku80 and XRCC4 in the rejoining of I-Scel
endonuclease versus IR-induced DSBs

Why are the requirements for XRCC4 and Ku80 distinct
for endonuclease- and IR-induced breaks? Enzymatic
cleavage leaves clean termini while radiation-induced
DNA ends are blocked by 5 dephosphorylated residues
or 3’ phosphoglycolates, which need to be removed prior
to further processing. The resection of this type of ends
requires the kinase activity of DNA-PK, and/or Artemis,
and XRCC4/LiglV (11,48,56). Recruitment and proper
activity of these proteins depend on Ku (7,14,16), thus
explaining the high sensitivity of Ku80-deficient cells
towards radiation but not enzymatic damage. In contrast,
XRCC4 is needed for both types of breaks. An alternative
but perhaps less likely possibility is that Ku80-indepen-
dent end-joining mediates efficient repair of 1-2 DSBs but
cannot cope with the large number of DSBs typically
generated by IR.

In conclusion, our findings significantly advance our
understanding of the roles of XRCC4 and Ku80 in
chromosomal DSB repair. Both proteins are essential for
the removal of IR-induced DSBs but only XRCC4 is
required for efficient rejoining of enzymatic breaks, which
may resemble spontaneous DSBs arising during normal
DNA metabolism. Our results can thus help us appreciate
why the XRCC4—/— but not the Ku80—/— phenotype is
lethal in mice.

While this manuscript was under revision Lopez and
colleagues published a complementary work (57) that lead
to similar conclusions, i.e. that only loss of XRCC4 but
not of Ku80 reduced the efficiency of the repair of I-Scel
induced breaks
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